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LETTER TO THE EDITOR

Subensembles and Kohlrausch relaxation in electronic and
molecular glasses

J C Phillips and J M Vandenberg
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA

Received 12 March 1997

Abstract. A new theory of glassy relaxation has recently identifiedtwo intrinsic stretched
exponential relaxation channels associated with charge and density fluctuations characterized by
two magic stretching fractions,βc = βK = 3

7 andβd = βsr = 3
5 . The theory is revised here to

describe structural relaxation in the presence of defects such as kinks in polymers. The revised
theory explains recent NMR multiple-spin-echo experiments which exhibittwo corresponding
relaxation modes (‘slow’ and ‘fast’). A remarkable byproduct of the theory is an explanation
of the origin of the Vogel–Fulcher ‘singularity’ in the viscosity of fragile glass formers near the
glass transition as the result oftwo-stage structural arrest.

Both electronic and molecular relaxation have been studied extensively in the 150 years that
have elapsed since Kohlrausch measured the discharge of a Leiden jar capacitor and found
that after an initial exponential transient the residual relaxation was described by a stretched
exponential,I (t) ∝ exp[−(t/τ )β ], with 0 < β < 1. It has turned out thatI (t) is ubiquitous
and in hundreds (or even thousands) of experiments on not only electronic but also molecular
relaxation this function fits the data even better than it did for Kohlrausch [1]. This success
is far more surprising than one might suspect given its convenient two-parameter algebraic
form, for I (t) is only an asymptotic approximation, and of course it is not analytic. In
a way this is not surprising, for residual relaxation in non-equilibrium disordered systems
such as glasses should not be describable by power series expansions, for example. For a
long time it was thought thatI (t) was only useful for fitting curves, and thatβ was no more
than a felicitous curve-fitting parameter with no microscopic meaning. About twenty years
ago, however, it was discovered (first in one dimension [2] and later more generally [3–5])
that the Kohlrausch function provided the asymptotic solution to a natural physical problem,
that of dispersive current transport in a material with a high trap density as measured either
with pulsed currents or through non-radiative exciton decay. In this model the origin of
the stretched exponential is easy to understand. As the traps or sinks absorb excitations the
density of excitations near the traps is depleted, resulting in a decreasing rate of relaxation
as particles must diffuse increasingly large distances before being absorbed at the traps or
sinks. Once this had been demonstrated there was a tendency to declare the problemsolved
(at least among some theorists [6]), even while experimentalists still regarded it as one of
the majorunsolvedproblems of physics [7].

This divergence of viewpoints arose because the theory seemed to be incapable of
predicting the values ofβ observed in experiments on different materials with different
pumps and probes. When the relaxation takes place entirely through short-range interactions
at randomly distributed static traps in a configuration space of restricted dimensionality
d∗, the theory [8] unambiguously predictsβ = d∗/(d∗ + 2), and with the unrestricted
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value d∗ = 3 this givesβ = βsr = 0.6. However, in structural relaxation experiments a
wide range of values ofβ between 0.9 and 0.1 is observed, corresponding to apparently
arbitrary fractal configuration space dimensionalitiesd∗, even at low temperatures where
β has become temperature independent. The natural explanation for this is that residual
relaxation depends on the impurity structure in some way. However, if this is the case, then
there is no reason for the observed invariance of the stretched exponential functional form
either, and we are left no better off than Kohlrausch, whose value forβ was 0.426 [1].

While the problem of connecting the theory of dispersive transport, with depletive effects
near traps, to residual relaxation experiments quantitatively has long been deemed insoluble,
a recent lengthy survey of conceptual and mathematical models, computer simulations and a
very wide range of experimental data [8] has shown that the situation can be greatly clarified
by combining fundamental understanding of the mathematical problems involved in defining
d∗ with a detailed analysis of material properties. One of the key steps was the realization
that the randomly distributed sinks which are traps in the electronic case can become
relaxation centres in the molecular case. These relaxation centres act as ‘black holes’ for the
non-ergodic dissipation of structural excitations. The local nature of the electronic traps is
irrelevant to the value ofβ; all that is required is that the diffusion coefficient of these centres
be small compared to that of medium excitations, and similarly for their decay rate. In this
way it becomes possible to separate extrinsic and intrinsic effects, and to recognize that for
dispersive electronic transport the dimensionality of configuration spaced∗ is the physical
dimensionalityd when relaxation occurs through density fluctuations, whiled∗ = d/2,
corresponding to fractal dispersive transport (FDT), when the relaxation occurs through
charge fluctuations. FDT was explained by an Ewald-like construction which assumed
that collective plasma fluctuations are ineffective in linearly relaxing individual particles,
much as only phonons, and not phasons, contribute to linear diffusion and relaxation in
quasicrystals [9].

The analogy between quasicrystal structural relaxation and electronic relaxation is a
natural one because in both cases the diffusional anomalies occur in the context of a
translationally invariant medium. Because the two values ofβ which are widely observed
in accurate studies of relaxation areβ = 3

5, corresponding tod = d∗ = 3, andβ = 3
7,

corresponding tod∗ = 3
2, it was natural to assume that the effective medium model which

gaved∗ = 3
2 for electronic relaxation could also be used to explain the value ofβ = 3

7
observed in many structural relaxation experiments, as the consequence of long-range forces.
Certainly long-range Coulomb forces are present in all structural relaxation experiments.
For example, one of the materials which exhibitsβ = 3

7 is a-Se. This nominally non-polar
material consists of∼300-atom chains and it is known to exhibit strong infrared absorption
bands which arise from internal distortions of its spiral symmetry. The induced effective
charges could then introduce long-range interactions between kinks which would account
for the observed value ofβ. However, there are some cases where these arguments appear
to fail, notably in explaining results obtained in some very elegant molecular dynamics
simulations of relaxation in fused salts. Also many scientists have expressed reservations
about the overall soundness of using Coulomb forces to explain relaxation in non-polar
hydrocarbons, regardless of geometry.

To resolve these questions this letter re-examines the basic electronic trap or sink model
and suggests alternative molecular models based on subspace or subensemble relaxation.
In the electronic case the excitations are injected into the bulk, either by electrodes or by
light, and diffuse to point sinks. Depletion of excitations near the sinks is described by the
diffusion equation, with logarithmic length scales on each side of the equation proportional
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to d∗ andd∗ +2. However, in structural relaxation experiments the nature of the relaxation
is strongly affected by the various structural elements of the glass. Short-time relaxation
of density fluctuations, which occurs at higher temperatures but still close to the glass
transition, may be representative of the glassy medium as a whole. However, long-time
relaxation may be associated with characteristic defects in the medium-range structure of
the glass, as at long times only excitations localized at such defects have survived earlier
thermalization. The nature of the configuration space in which the diffusion takes place
may itself depend on the temperature at which the relaxation is studied and on the character
of the pump used to produce that excitation and the probe used to detect its decay.

This model, in which bulk excitation is replaced by selective excitation of subspace
subensembles, has the advantage for structural relaxation that the nature of the dissipation
is clarified. However, in comparison with the bulk excitation model, we no longer have
a nearly universal mechanism for a nearly universal observation. Instead we must find a
new mechanism for structural relaxation which givesd∗ = d/2 for each case of selective
or defect-localized excitation, and this mechanism must be sufficiently general as to apply
to many different materials in which one would expect the selected sources to behave quite
differently. In other words, it is necessary to justify the model separately and in detail for
each case, even though many cases lead to almost identical behaviour. At first it may appear
that in trying to escape from the difficulties of ‘universal’ Coulomb fractal relaxation we
have only jumped ‘from the frying pan into the fire’, but it turns out that the subspace or
subensemble model contains some hidden simplifications which produce most of the desired
results. In any case, with an alternative model the reader may choose for herself or himself
the approach that seems better suited to a given situation.

The general idea that leads to fractal Kohlrausch relaxation is simple. Although the
dimensionality of laboratory space isd, the effective dimensionalityd∗ of the configuration
space, in which glassy relaxation takes place, is severely altered by the constraints imposed
on particle motion by structural arrest. Thusd∗ = dfp, wherefp is the partition or projection
fraction of degrees of freedom available for relaxation, which is determined by analysing
product vector spaces; the easiest way to understandfp is through examples. With normal
bulk density fluctuationsfp = 1. With bulk charge fluctuationsfp = 1

2 because plasmons
do not contribute to relaxation of individual charges [8]. In a three-dimensional quasicrystal
fp = 1

2 because only phonons, not plasmons, contribute to diffusion. However, in an axial
quasicrystalfp = 3

5 because there is normal periodicity along the axis [9].
As an example of subensemble relaxation, let us consider long-chain polymers without

bulky side groups, such as a-Se or polybutadiene [8]. Here experimental probes have
generally givenfp = 1

2. This was previously explained [8] in the context of Coulomb-
mediated long-range interactions involving chain ends. However, it is generally believed
that polymer chains are composed of segments separated by kinks. It is quite possible that for
many experimental pump/probes the studied excitations are concentrated at the kinks. How
will these relax? At very long times and long distances relaxation occurs by reptation as the
chain segments first adjust laterally within the reptation tube, and then longitudinally along
this tube [10, 11]. However, within the Kohlrausch time frame associated with relaxation of
the first structure factor peak, individual kink relaxation takes place within a local product
vector subspace in which the kink can either rotate or move radially in the cylindrical
coordinates defined by the chain axis. (At low temperatures longitudinal kink motion along
the chain will require related kink motions in adjacent chains; these lie outside the subspace
of individual kink motion.) Motion in the angular factor space is effective, while that in
the radial factor space is ineffective. This is analogous to an unusual combination lock in
which the dial can move both radially and angularly, but the tumblers are affected only by



L254 Letter to the Editor

angular motion. This suggests thatfp = de/(de+di). With de = di = 1, this givesfp = 1
2,

in agreement with experiment.
This simple but very important example shows how restricted subspace or subensemble

relaxation at low temperatures can often yieldfp = 1
2. One possible general mechanism for

structural arrest can be dimensional regression of the defect configuration space; in effect, the
dominant defect (here a kink) relaxes within a subspace of dimensionalityd−1= 2, and in
that subspace there is an effective principal axis and an ineffective one. Molecular dynamic
simulations [12] provide another such example; although these calculations are relatively
‘old’ by now, they show how the mechanism just discussed for the simple cylindrical
geometry applies equally well to an apparently much more complex geometry.

The example studied in [12] is a fused salt mixture, KCN ((K2, Ca)(NO3)2), at a
composition Ca0.4 which maximizes the glass-forming tendency. To understand the local
structure of this glass one should study the crystal structures of the components to see how
they are affected by the presence of the triangular planar unit NO3. With K the NO3 unit
dominates and the crystal structure is rhombohedrally distorted (along the threefold body
diagonals). With Ca the structure has the usual fluorite cubic form, with each NO3 unit
tetrahedrally coordinated and oriented normal to a threefold tetrahedral axis. In the glass
there will be a mixture of NO3 coordination configurations, dominated by complexes with
one or two Ca ions in the first coordination shell. Molecular dynamics [12] showed that
density relaxation, as measured by the height of the first structure factor peak, exhibits
Kohlrausch relaxation withβd = 0.61, corresponding tod = 3 andfp = 1. They also
found that of the three relaxation times, NO3 translation along the planar normal (I) and
NO3 rotation around the twofold axis accompanied by a tilt of the molecular planar by
π (IIA) or by π/2 (IIB) or around the threefold axis (III), at high temperatures I, IIA
and IIB were almost equal, while III was rare. However, belowTg + 50 K, while the
relaxation times of I and IIA remained nearly equal, that of IIB became almost a factor of
100 larger nearTg. Both IIA and IIB exhibited Kohlrausch relaxation, withβIIA = 0.61,
corresponding to density fluctuations withfp = 1, andβIIB = 0.42, corresponding to fractal
relaxation withfp = 1

2. Thus as the density fluctuations freeze out planar tilt up toπ/2 is
almost always followed by continued tilting toπ , with normal relaxation. The increasingly
unlikely cases where theπ/2 tilt is reversed to zero are described by fractal relaxation.

The microscopic interpretation of these results is that aboveTc ∼ 450 K∼ Tg + 50 K
density fluctuations dominate and the Ca mobility is such that these ions enter and leave
nitrate coordination spheres more rapidly than the rotational relaxation times, so that one
cannot speak of a fixed number of Ca ions in a nitrate coordination sphere. BelowTc
the latter becomes well defined and there are several subensembles. With two coordinated
Ca ions both translational normal and twofold rotational motion are partially arrested, the
former more than the latter. Thus the twofold rotation becomes the easy motion for this
subensemble, while the translational motion becomes the hard one. In general a density
fluctuation involves tandem or correlated translation–rotation, and this is the case for the
tilt by π . However, to obtain angular motion involving a tilt jump byπ/2 which is then
reversed, one must project from translation–tilt product space directly into pure tilt factor
space. The partition fraction for this projection is exactlyfp = 1

2, which explains the
simulated valueβIIB = 0.42. Previously [8] this was identified withβK , the charge-
fluctuation value, which also hasfp = 1

2. However, this explanation is unsatisfactory,
because both IIA and IIB are subject to the same long-range Coulomb forces.

To apply these ideas to the new NMR relaxation experiments [13] we review the results
obtained onortho-terphenyl (OTP) by deuterium NMR atT = Tg + 10 K. OTP is a
crescent-shaped planar monomer, and one of the few which can be prepared with very



Letter to the Editor L255

high purity and supercooled to a glass without crystallization. AtTc = Tg + 50 K its
density fluctuations are arrested; measurements ofβ aboveTc give fp = 1, as expected.
Below Tc we have a novel relaxation regime in which the relaxation time measured through
the viscosity becomes 100 times shorter than that measured by NMR [14]. (Compare the
divergence of the two relaxation times in KCN discussed above.) To explore the origins of
this divergence the new NMR experiments employed suitably phased and oriented double
and quadrupole echoes (pulse and reversing pulse configurations). The pulse spacingtp for
an echo is small compared to the relaxation timesti between echoes, andt2 ∼ 103t1 ∼ 106tp.
The various pulse configurations are illustrated schematically in figure 1, as reproduced here
for the reader’s convenience from [13]. These pulse configurations determine the double-
correlation function

F2
(
t1
) = 〈 cos

[(
ω1− ω2

)
tp
]〉

(1)

which acts as a filter for the spin orientational motion, and the quadruple-correlation function

F4
(
t1, t2

) = 〈 cos
[(
ω1− ω2

)
tp
]

cos
[(
ω1− ω2

)
tp
]〉

(2)

which acts as a double filter for the two widely different timest1 and t2. Kohlrausch
relaxation is found for bothF functions, and the double echo is described by the relaxation
time τ2 = 17 ms withβ2 = 0.42 andfp = 1

2. The two echoes are separated by a timet1,
while the four-echo spacings aret1, t2 and againt1. Thus in the quadruple-echo configuration
the two t1 pairs act as preparative pump and selective probe, respectively, while thet2 pair
measures theτ4, β4 relaxation of the subensemble prepared or probed by the double echoes.
This nested echo structure, witht1t2 ∼ τ 2, is ideal not only for separating long and short
relaxation processes, but also for exploring the intrinsically hierarchical nature of glasses.
Again the prepared and selected subensemble quadrupleF4 relaxation has the Kohlrausch
form, but the measured values ofτ4 andβ4 depend on the dynamic extent of subensemble
preparationx1 = t1/τ2, as one would expect. The subensemble relaxation timeτ4 (denoted
by κ−1 in [13]) increases withx1 and is already∼3τ2 for t1 ∼ 1 ms∼ 40tp; this increase
reflects slower relaxation of the subensemble. This could be due to reduced relaxation within
the subensemble itself (several microscopic models of this type are discussed in [13], all
yielding similar results), or it could be caused by slowing of subensemble diffusion to traps.

The most decisive results of this experiment concern the magnitudes ofβ2 andβ4, which
describe relaxation processes on differently prepared subensembles: the latter increased from
0.59 atx1 = 0.06 at first parabolically, reaching 0.7 forx1 ∼ 3. It is striking that the initial
values ofβ2 and β4 correspond so well tofp = 1

2 and 1, respectively. To identify the
relevant subensembles we need a structural model for OTP belowTc.

Given the planar crescent shape of the molecule we suppose that the molecules are
locally layered, with domains of chiral symmetry; that is, orienting the crescents from top
to bottom, there are two possible conformations, right or left handed. The domains of
opposite chiral symmetry are separated by chiral edges, which are segments with kinks.
The nuclear spins within a domain are assumed to interact strongly enough so that they
do not contribute to the echoes. The subensemble selected by the short-time filter pairt1
is assumed to be localized on the chiral edge segments. These spins can diffuse either
along the edge (effective direction) or normal to it (ineffective direction). When the excited
spins diffuse into the pool of domain spins, no true relaxation occurs, and the excited spins
eventually return to the chiral edge. True relaxation occurs only for diffusion of excited
spins along the edge, givingfp = 1

2. After times of order 10τ2 most of these spins have
decayed, with many of them reaching chiral kinks. These kinks may involve vacancies and
the local environment may have little or no layered character. Thus these point defects or
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Figure 1. This figure, taken from [13], illustrates how a series of spin echo pulses can measure
the correlation functionsFn (n = 2, 4) described by (1) and (2). In (a) and (b) the filter
effect for F2 is explained, while the double-filter effect forF4 is illustrated in (c). The full
information contained in these correlation functions is extracted by combining pulses of different
polarizations, as explained in detail in [13]. For our present purposes it is enough that the
reader appreciate that these correlation functions measure much more than the average relaxation
properties, as determined in traditional relaxation experiments, described here byβ2(t1), because
they also measureβ4(t1, t2), wheret2/t1 ∼ 103 in the data of [13]. The hierarchical nature of
the double filter is ideal for probing different relaxation regimes and for identifying the properties
and even formation of relaxation centres. The nested data explore an entirely new regime of
relaxation and they contain the many surprises discussed in the text.

traps have no constraints and spins neighbouring such defects may havefp = 1. This is
an unusual situation, as normally the relaxation hierarchy goes from larger values ofβ at
shorter times and higherT to smaller values at longer times and lowerT . Here however
the subensembles studied are severely selected and the long time is∼1 s. It seems that the
combinedt1, t2 ∼ 103t1 relaxation has taken us to the ultimate sink. Indeed ast1 increases
β4 increases toward unity, which means that the remaining spins are sampling a local region
which has not undergone full structural arrest.

The key question that will concern experimentalists is why these intrinsic results are
specific to OTP. In the case of polyvinylacetate (PVAc) studied atT = Tg + 20 K by
13C-NMR [15, 16] it was found thatβ2 = 0.52, which is intermediate betweenβK and
βsr . There are many differences between the experiments of [15, 16] and [13]. The13C
substitution was made not at a backbone site but at the bulky polar carbonyl side group site
(see figure 19 of [8]) of PVAc, a site which may see a complex mixture of long-range polar
and short-range nonpolar forces respectively parallel and perpendicular to the backbone. It
is worth noting that other polymers with bulky side groups, such as polyisobutylene (PIB)
and polyisoprene (PI), also exhibit intermediate values ofβ, and that the chemical trends of
β in these polymers correlate with the side group density [8]. What this also means is that
in the presence of bulky side groups angular and radial kink motions no longer decouple
from longitudinal chain translation.

The microstructural model discussed above, where it was applied to polymers, fused salts
and complex glass-forming monomers, is helpful in understanding some of the qualitative
aspects of glass formation widely discussed phenomenologically in terms of fragility [17–
19]. Strong glass formers (such as network glasses) exhibit a viscosityη(y), with y = Tg/T ,
with typical exponential (Arrhenius) behaviour with activation energiesEa of the order of
Evap, the heat of vaporization. ‘Fragile’ glass formers, such as OTP, characteristically
exhibit a knee in logη(y), and above the knee neary = 1 typically Ea ∼ 5Evap. (This
behaviour is sometimes fitted with the Vogel–Fulcher expression logη ∼ (T − Tg)−1.) We
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can explain this two-stage behaviour (including its correlation withβ in the second stage
nearTg [17]) microscopically by observing that the knee occurs at the crossover region
from density to fractal relaxation. The abnormally large value ofEa/Evap in the fractal
region simply reflects the collective nature of fractal structural arrest, which involves the
formation of ordered microdomains at fixed density. This also explains the origin of the
Vogel–Fulcher fit, which now appears to be artificial. It is worth noting that single-stage
singular behaviour has been widely discussed in the literature (for references see [19]).

In the first stage of relaxation involving density fluctuations, structural arrest can be
observed directly as a pseudo-second-order transition in the radial Debye–Waller factor width
of the first peak in the structure function, which takes place at the knee in logη(y) [20]. At
temperatures below this density glass transition the only possible second-stage relaxation
involves the development of locally ordered domains, presumably as a similar pseudo-
transition takes place in the medium-range orientational order of anisotropic molecules with
small electric dipole moments such as OTP. This is fully consistent with our above analysis
of β2 for OTP [13], and it shows that the subensemble observed in the short-time window
is in some ways representative of the macroscopic supercooled liquid. Under high pressure
such medium-range ordering might be enhanced by an incidental pseudo-first-order change
in short-range order (for example, coordination numbers), and at times it has been suggested
that such a change might be the primary mechanism responsible in general for two-stage
behaviour [19]. The present discussion of OTP shows, to the contrary, that in many fragile
molecular liquids the knee is related to medium-range order.

The two-stage fragility model [18, 19] also helps us to understand the behaviour ofβ4(x1)

in greater detail. The reversal of the magnetization by the echo pulses is always incomplete,
and the dissipative loss increases asx1 increases. This dissipative loss need not be entirely
structureless. Just as the thermal quenching process produces metastable primary relaxation
centres [8], so the magnetic echo dissipation can be accompanied by spin diffusion which
rearranges the subensembles and concentrates them at secondary relaxation centres. It may
seem that the energy dissipated is too small to produce such concentrations, but we must
remember that the entire system is not far from equilibrium, and that the energy associated
with medium-range order in a fragile liquid such as OTP is itself very small; in fact, in NMR
spin echo experiments all preparation (rearrangement) energies are small and comparable.
These secondary centres themselves can be associated with density fluctuations, so for small
x1 they giveβ4 = βsr . As x1 increases, diffusion can continue from secondary centres to
tertiary centres. The natural variable for thermally activated magnetic relaxation is lnt

[21], and if the secondary centres originally are in metastable positions, thereβ4 relaxation
should develop not as lnt but rather as(ln t)2, as observed [13]. This point is very subtle;
it illustrates the power of subensemble selection and preparation.

In conclusion, we have revised our earlier analysis [8] of molecular relaxation of glasses
to distinguish the effects of specific structural elements, such as kinks in polymers, as
sources of fractal relaxation. It appears that there are many mechanisms which can give
rise to fractal relaxation with partition fractionsfp = 1

2, and that these are generally based
on local product subspaces in the non-polar molecular case, in contrast to the global product
superspaces which produce fractal electronic and ionic charge, as well as orientational glass
and quasicrystal, relaxation [8]. Our analysis has clarified the origin of normal and fractal
Kohlrausch relaxation as calculated in MDS for the prototypical ionic glass KCN. We have
proposed a new structural model for OTP forTg < T < Tc with which we have analysed new
double- and quadruple-echo NMR data on OTP [13] which contain very accurate values of
the Kohlrausch stretching fractionβ. The analysis shows that when accurate values ofβ are
combined with normal and fractal double-channel dispersive transport theory a remarkably
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rich description of relaxation processes in glasses and deeply supercooled liquids emerges.
From earlier experiments on a wide variety of materials with different pumps and probes it
was already clear (see table 7 of [8]) that the intrinsic values ofβ are dominated byd∗ = d
or d/2, but that the choice between these two cases is often surprising. The present analysis
of NMR nested and hierarchical multiple echoes in OTP has brought fresh surprises. It
appears that the complexity of relaxation processes in glasses and supercooled liquids is so
great that many more surprises await us. Nevertheless, the present analysis has unexpectedly
led us to a new picture of the two-stage nature of the relaxation that takes place in a deeply
supercooled fragile liquid. Radial density fluctuations are arrested in the first stage in OTP
nearTg + 50 K, while in the second stage an entirely different kind of relaxation develops
as internal medium-range orientational (locally ferroelastic) order develops. Identification
of the second channel, which is responsible for the second relaxation stage as a fractal chiral
edge channel, resolves a number of paradoxes in the interpretation of other experiments.
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